Mobile QR Code QR CODE
Export citation EndNote

References

1 
AASHTO (2017) AASHTO LRFD Bridge Design Specifications, 8th edition. Washington, DC; American Association of State Highway and Transportation Officials (AASHTO).URL
2 
ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318-19). Farmington Hills, MI; American Concrete Institute (ACI).URL
3 
ACI Committee 318 (2063) Building Code Requirements for Structural Concrete (ACI 318-633). Farmington Hills, MI; American Concrete Institute (ACI).URL
4 
ACI Committee 318 (2069) Building Code Requirements for Structural Concrete (ACI 318-69). Farmington Hills, MI; American Concrete Institute (ACI).URL
5 
CEN (2004) Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (EN. 1992-1-1: 2004). London, UK; European Committee for Standardization (CEN), British Standards Institute (BSI).URL
6 
Collins, M. P., Mitchell, D., Adebar, P., and Vecchio, F. J. (1996) A General Shear Design Method. ACI Structural Journal 93(1), 36-45.URL
7 
Dunkelberg, D., Sneed, L. H., Zilch, K., and Reineck, K.-H. (2018) The 2015 ACI-DAfStb Database of Shear Tests on Slender Prestressed Concrete Beams without Stirrups—Overview and Evaluation of Current Design Approaches. Structural Concrete 19(6), 1740-1759.DOI
8 
Hong, S.-G., Kim, W., and Lee, J.-Y. (2007) Shear and Torsional Moment with Strut-and-Tie Models. Journal of the Korea Concrete Institute 19(4), 32-36. (In Korean)DOI
9 
Ju, H., Yerzhanov, M., Lee, D., Shin, H., and Kang, T. H.-K. (2023) Modifications to ACI 318 Shear Design Method for Prestressed Concrete Members: Detailed Method. PCI Journal 68(1), 60-85.URL
10 
Kang, T. H.-K., LaFave, J. M., Robertson, I. N., and Hawkins, N. M. (2007) Post-Tensioned Slab-Column Connections. Concrete International 29(4), 70-77.URL
11 
Kang, T., Lee, D., Yerzhanov, M., and Ju, H. (2021) ACI 318 Shear Design Method for Prestressed Concrete Members. Concrete International 43(10), 42-50.URL
12 
KCI (2022a) Shear and Torsion (KDS 14 20 22). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). (In Korean)URL
13 
KCI (2022b) Structural Concrete Design Standard for Serviceability (KDS 14 20 40). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). (In Korean)URL
14 
Kim, C.-G., Park, H.-G., Hong, G.-H., Kang, S.-M., and Suh, J.-I. (2014) Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements. Journal of the Korea Concrete Institute 26(4), 533-543. (In Korean)DOI
15 
Kim, S.-W., Jeong, C.-Y., Jung, C.-K., and Kim, K.-H. (2012) Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate. Journal of the Korea Concrete Institute 24(2), 157-164. (In Korean)DOI
16 
Kuchma, D. A., Wei, S., Sanders, D. H., Belarbi, A., and Novak, L. C. (2019) Development of the One-Way Shear Design Provisions of ACI 318-19 for Reinforced Concrete. ACI Structural Journal 116(4), 285-295.URL
17 
Lee, D., Han, S. J., Ju, H., and Kim, K. S. (2021) Shear Strength of Prestressed Concrete Beams Considering Bond Mechanism in Reinforcement. ACI Structural Journal 18(1), 267-277.DOI
18 
Lee, D., Park, M. K., Joo, H. E., Han, S. J., and Kim, K. S. (2020) Strengths of Thick Prestressed Precast Hollow-Core Slab Members Strengthened in Shear. ACI Structural Journal 117(2), 129-139.URL
19 
Lee, D., Shin, H., Yerzhanov, M., Ju, H., and Kang, T. H.-K. (2023) Modification of Approximate Method of ACI 318 Prestressed Concrete Shear Provision. ACI Structural Journal 120(3), 131-144.DOI
20 
Lee, J.-H. (2021) Prestressed Concrete. Paju, Korea: Dongmyung. (In Korean)URL
21 
Lee, J.-Y. (2022) Shear and Torsion. Paju, Korea: Donghwa. (In Korean)URL
22 
MacGregor, J., and Hanson, J. (1969) Proposed Changes in Shear Provisions for Reinforced and Prestressed Concrete Beams. Journal of the American Concrete Institute 66(4), 276-288.DOI
23 
MOLIT (2021) Korean Concrete Bridge Design Code (Limit State Design) (KDS 24 14 21:2021). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT). (In Korean)URL
24 
Oh, B.-H., Han, S. H., Lee, H. J., Kim, J. S., and Shin, H. S. (1998) Shear Damage Behavior of Reinforced Concrete Beams under Fatigue Loads. Journal of the Korea Concrete Institute 10(1), 143-151. (In Korean)URL
25 
Park, H. G., Kang, S., and Choi, K. K. (2013) Analytical Model for Shear Strength of Ordinary and Prestressed Concrete Beams. Engineering Structures 46, 94-103.DOI
26 
Park, M. K., Lee, D., Han, S. J., and Kim, K. S. (2019) Web-Shear Capacity of Thick Precast Prestressed Hollow-Core Slab Units Produced by Extrusion Method. International Journal of Concrete Structures and Materials 13(7), 1-14.DOI
27 
PTI (2023) Post-tensioning Manual, 7th Edition. Farmington Hills, MI: Post-Tensioning Institute (PTI).URL
28 
Sozen, M. A., Zwoyer, E. M., and Siess, C. P. (1959) Investigation of Prestressed Concrete for Highway Bridges: Part 1, Strength in Shear of Beams without Web Reinforcement. Champaign, IL: University of Illinois at Urbana-Champaign.URL
29 
Wolf, T. S., and Frosch, R. J. (2007) Shear Design of Prestressed Concrete: A Unified Approach. Journal of Structural Engineering 133(11), 1512-1519.DOI