Mobile QR Code QR CODE
Export citation EndNote

References

1 
Arioz, O. (2007) Effects of Elevated Temperatures on Properties of Concrete. Fire Safety Journal 42(8), 516-522.DOI
2 
CEN (2004) Eurocode 2: Design of Concrete Structures - Part1-2 : General Rules - Structural Fire Design (EN. 1992-1-2: 2004). London, UK; European Committee for Standardization (CEN), British Standards Institute (BSI).URL
3 
Georgali, B., and Tsakiridis, P. E. (2005) Microstructure of Fire-Damaged Concrete. A Case Study. Cement and Concrete Composites 27(2), 255-259.DOI
4 
JSA (2014) Coating Materials for Textured Finishes of Buildings (JIS A 6909). Tokyo, Japan; Japanese Standards Association (JSA), Japanese Industrial Standard (JIS). (In Japanese)URL
5 
KATS (2017a) Testing Method for Comrpessive Strength of Hydraulic Cement Mortars (KS L 5105). Seoul, Korea: Korea Agency for Technology and Standards(KATS), Korea Standard Association (KSA). (In Korean)URL
6 
KATS (2017b) Polymer Modified Cement Mortar for Maintenance in Concrete Structure (KS F 4042). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
7 
KATS (2020) Standard Test Method for Accelerated Carbonation of Concrete (KS F 2584). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA), 1-4. (In Korean)URL
8 
KATS (2022) Test Method for Compressive Strength of Concrete (KS F 2405). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
9 
KATS (2023) Wall Coatings for Thin Textured Finishes (KS F 4715). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA), 1-20. (In Korean)URL
10 
Kim, H. Y., and Seo, C. H. (2004) An Experimental Study on the Physical Properties by Compressive Strength Areas of Concrete at High Temperature. Journal of The Architectural Institute of Korea Structure and Construction 20(11), 75-82. (In Korean)URL
11 
Kim, J. J. (2014) An Experimental Study on Fire resistance Performances of High-Strength Concrete Application of Fire-proofing Protection Method. Journal of The Architectural Institute of Korea Structure and Construction 30(3), 89-96. (In Korean)DOI
12 
Ko, J. W., Ryu D. W., Lee, M. H., and Lee, S. H. (2007) Study on the Behavior of Microstructure and Spalling Mechanism by Heat and Moisture Movement in Concrete under Fire Environment. Journal of the Architectural Institute of Korea Structure and Construction 23(12), 107-116. (In Korean)URL
13 
Li, M., Qian, C. X., and Sun, W. (2004) Mechanical Properties of High-Strength Concrete after Fire. Cement and Concrete Research 34(6), 1001-1005.DOI
14 
Lim, S. H., Yoo, S. H., and Moon, J. W. (2011) Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete. Fire Science and Engineering 25(5), 8-13. (In Korean)URL
15 
Oh, S. G., and Ko, E. H. (2008) A Measurement of the Pore Structure and a Life Prediction which Applied the Chloride Ion Diffusion Coefficient of High-heated Concrete. Journal of the Architectural Institute of Korea Structure and Construction 24(3), 127-134. (In Korean)URL
16 
Poon, C. S., Azhar, S., Anson, M., and Wong, Y. L. (2001) Strength and Durability Recovery of Fire-Damaged Concrete after Post-Fire-Curing. Cement and Concrete research 31(9), 1307-1318.DOI
17 
Sanjayan, G., and Stocks, L. J. (1993) Spalling of High-strength Silica Fume Concrete in Fire. Materials Journal 90(2), 170-173.DOI